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1. INTRODUCTION 
     Turcotte and Lyons [1] initially considered the 
periodic form of MHD boundary layer flow between two 
parallel walls. They also showed that inviscid theory may 
be used to calculate the overall performance of 
electromagnetic pumps and generators while the 
boundary layer theory may be used to obtain the wall 
shear stress. In order to obtain the solution, they adopted 
regular perturbation method up to first order correction 
for larger values of magnetic interaction parameter 2

M  
(= 2

0
/

r
B Uσ λ ρ , where 

r
U  is the reference velocity of the 

fluid at the outer edge of the momentum boundary layer). 
Further, to verify the solutions obtained from series 
solution method, they also given consideration to 
Karman-Pohlhausen integral method. 

Since thermal radiation effects are important in 
context of space technology and processes involving 
high temperatures therefore Ozisik [2], Sparrow and 
Cess [3] and Arpaci [4] initially studied the interaction of 
thermal radiation and natural convection. Later, 
considering the Rosseland diffusion approximation, 
investigations on the natural convection flow as well as 
on the mixed convection flow of an optically dense gray 
viscous fluid past or along heated bodies of different 
geometries have been accomplished by Hossain et al. 

[5]-[6], Hossain and Munir [7], Hossain and Rees [8], 
Molla and Hossain [9], Siddiqa et al. [10]. 

In this work, natural convection flow along a 
semi-infinite vertical plate of electrically conducting and 
optically dense gray fluid is considered in the presence of 
sinusoidal transverse magnetic field (see Turcotte and 
Lyons [1]). The aim of this study is to look at the effects 
of transverse sinusoidal magnetic field which has its 
applications in induction electromagnetic pumps; since 
magnetohydrodynamic power generators also use 
induction designs. The boundary layer equations are 
solved numerically with two different methods. On one 
hand direct numerical simulation method is applied to 
discover the flow pattern; while on the other hand 
governing equations are reduced to convenient form by 
the introduction of the stream function formulation (SFF). 
The non-similar equations obtained from the SFF are 
solved by Keller-box method for the whole range of X 
that measure the axial distance from the leading edge. 
Numerical results thus obtained are expressed 
graphically in terms of local skin friction and local 
Nusselt number coefficients with effect of physical 
parameters, such as the magnetic field parameter, M, 
thermal radiation parameter, 

d
R  and surface temperature 

parameter, 
w

θ  for the fluids having Prandtl number 
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Pr=0.05. Effect of sinusoidal magnetic field on 
streamlines and isotherm lines have also been discussed 
and shown graphically. 

 
 

2. MATHEMATICAL FORMULATION 
     Consider the steady 2D natural convection flow of a 
viscous, electrically conducting and optically dense gray 
fluid along a semi infinite vertical heated surface in the 
presence of magnetic field prescribed in the streamwise 
direction, ( )yB x , following Turcotte and Lyons [1], is 
given as 

( )00,    sin .                                     (1)x y

x
B B B

π

λ
= =  

     where 0B and λ are the constants related to transverse 
magnetic field and wavelength of the applied magnetic 
field, respectively. From the relation given in (1) it is 
depicted that induced magnetic field is not considered 
and induced fields can be neglected if the magnetic 
Reynolds number (

0mR uµ σ λ= , where 
0

µ is the 
magnetic permeability of the free space) is much less 
than unity. The devices which are functional due to liquid 
metals usually have magnetic Reynolds number between 
0.1 to 0.01. If the induced magnetic field effects are 
negligible then the effects of applied field are obtained by 
solving Laplace's equation in the boundary layer region. 
Its worthy to mention here that Turcotte and Lyons [1] 
were the first to consider the magnetic field of periodic 
form as given in (1), which has special applications in the 
induced electromagnetic pumps and generators. It is 
assumed that the surface temperature, Tw, of the flat plate 
is higher than the ambient fluid temperature, T∞. Further, 
all the thermo-physical fluid properties are considered to 
be constant with negligible viscous dissipation effects. 
     Thus the fundamental equations under the usual 
Boussinesq approximation for steady 
magnetohydrodynamic flow with Ohm's law and 
Maxwell's equations associated with thermal radiation 
may now be written as 
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     where u and v are the x and y -components of the 
velocity field, respectively, in the momentum boundary 
layer; T is the temperature of the fluid in the thermal 
boundary layer, ρ the density of the fluid, ν the kinematic 
coefficient of viscosity, -g identifies the gravitational 
vector, β the coefficient of thermal expansion, κ the 
thermal conductivity and α the thermal diffusivity. 
     The term qr in energy equation represents radiative 
heat flux in the y -direction. In order to reduce the 
complexity of the problem and to provide a means of 

comparison with further studies that might employ a 
more detailed representation for the radiative heat flux, 
here the optically thick radiation limit, known as 
Rosseland diffusion approximation (see Ozisik [2]), is 
considered. Due to this assumption, the radiative heat 
flux qr is as given in (5). 

( )
0   

4
-                                           (5)
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     In Eq. (5) ‘a’ is the Rosseland mean absorption 
coefficient, σ s is the scattering coefficient and 0σ is the 
Stefan-Boltzmann constant. Diffusion approximation is 
valid in the interior of a medium but not employed near 
the boundaries and is good only for intensive absorption, 
that is, for an optically thick boundary layer. The 
coordinate system and the flow configuration of the 
problem are shown in Fig. 1. 
 
The boundary conditions to be satisfied are 
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Fig. 1 Physical model and coordinate axes 

 
     In order to obtain the governing equations in 
dimensionless dependent and independent variables, we 
introduce the following parameters. 
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     where Grλ is the Grashof number which measures the 
ratio of buoyancy force to the viscous force. Substituting 
(7) in (2)-(6), we get the following set of governing 
equations: 

0                                                                  (8) 
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The corresponding boundary conditions are 
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0 :          0,    1                                  (11)

:        0,   0                                           

v θ

θ

= = = =

→ ∞ → →

y u

y u
 

Where 
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In Eq. (12) M is the magnetic interaction parameter 
(or simply, the magnetic parameter), that controls the 
strength of the sinusoidal magnetic field, Rd is the Planck 
constant or thermal radiation parameter which acts as a 
heat source due to the thermal radiation, 

w
θ denotes the 

surface temperature parameter that measures the ratio of 
the surface temperature to the ambient fluid temperature 
and Pr symbolizes the Prandtl number which gives the 
ratio of momentum diffusivity to the thermal diffusivity. 
     Now we draw our attention in finding the solution of 
equations (8)-(11) with the direct numerical simulation 
(DNS) method. For this purpose Eqs. (8)-(11) are 
discretized with the help of difference quotients. The 
partial derivatives in y are replaced with central 
difference formula while backward difference quotients 
are introduced in place of derivatives in x direction. 
Conclusively, we get the discretized equations with 
unknown’s u, θ  and v. These coupled equations are 
solved independently with the aid of tri-diagonal solver. 
The computation has been started at x=0.01 and then it 
marches up to x=10.0 using the step length ∆x=0.01. In 
the computation procedure, the accuracy of 10-6 is 
achieved. Numerical experiments show that the 
maximum value of y which gives precise results is 20.0 
with ∆y=0.01. Thus, physically important quantities, 
namely, coefficient of local skin friction, CfλGrλ-3/4, and 
coefficient of local Nusselt number, NuλGrλ-1/4, are 
measured from the following relations 
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and entered in Tables 1 against X� [0.01,10.0] for Rd 
=0.0 and 2.0 while values of other parameters are taken 
as 2.1

w
θ = , M=0.5 and Pr=0.05. 

 
 
3. STREAM FUNCTION FORMULATION (SFF) 
     In this section, we introduce the stream function 
formulations (SFF), in order to reduce the boundary layer 
equations (8)-(11) to a system of parabolic equations 
which are then integrated by applying Keller-box method. 
The transformations for the stream function formulation 
are: 
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     where ψ is the stream function which satisfies the 
equation of continuity given in (8). Introducing (14) into 
the boundary layer equations (8)-(11), we acquire the 
following non-similar equations 
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The boundary conditions to be satisfied are 

 ( , 0) ( , 0) 0,    ( , 0) 1                                     

     ( , ) 0, ( , ) 0                                           (17) 
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ξ ξ
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     In the light of the previous investigations, we noted 
that in the absence of thermal radiation (Rd=0) Hunt and 
Wilks [11] discussed the above posed problem (15)-(17) 
with constant transverse magnetic field i.e. by taking 

yB =B0. In this investigation, full numerical solutions via 
algorithm based upon Keller box technique had been 
obtained for the whole range of local Hartmann 
parameter, ξ. However, Hunt and Wilks [11] also 
obtained the asymptotic solutions for the regions where ξ 
is treated to be sufficiently large and small. 
     The formulation obtained in (15)-(17) has been 
integrated numerically via Keller-box scheme, 
introduced by Keller and Cebeci [12].  
Now, one can obtain the local skin friction coefficient, 
CfλGrλ-3/4, and the local Nusselt number, NuλGrλ-1/4, from 
the following relations: 
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4. RESULTS AND DISCUSSION 
     Present analysis deals with the free convection flow of 
electrically conducting and optically dense gray fluid 
over a vertical plate in the presence of sinusoidal 
magnetic field. Solutions of the governing equations are 
obtained by two numerical techniques for the entire 
range of X, namely, (i) direct numerical simulation 
(DNS) method and (ii) Keller-box scheme (which is 
applied after reducing boundary layer equations into 
non-similar equations with the help of SFF). It should be 
noted that in the present investigation the value of 
Prandtl number, Pr, is taken to be 0.05 (that is appropriate 
for lithium). Numerical values of local skin-friction 
coefficient, CfλGrλ-3/4, and local Nusselt number, 
NuλGrλ-1/4 obtained by DNS are entered, respectively, in 
Table 1 against X�[0.01,10.0] for Rd=0.0 and 2.0 while 
values of other parameters are taken as θw=2.1, M=0.5 
and Pr=0.05 and compared quantitatively with those 
obtained from stream function formulation (SFF). It is 
inferred from these numerical values that local skin 
friction coefficient and local Nusselt number coefficient 
enhances considerably, owing to increase in the thermal 
radiation parameter, Rd. Due to the intense thermal 
radiation inside the boundary layer, rate of energy 
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transport of the fluid is increased sharply which in turn 
gives rise to the temperature of the fluid in the 
surrounding of the plate surface. Although the 
comparison shows good agreement between the two 
methods, but, in view of computational time and 
accuracy, SFF sounds to be more economical as 
compared to DNS method. 
 
Table 1: Numerical values of coefficient of 

skin-friction with Rd = 0.0, 2.0 and θw =2.1, 
Pr=0.05 and M= 0.5 

 
CfλGrλ-3/4 

Rd = 0.0 Rd = 2.0 
 
 

X DNS SFF DNS SFF 
0.01 0.3125 0.4055 0.3610 0.4575 
0.2 0.8216 0.8383 0.9359 0.9454 
0.5 0.9392 0.9522 1.0618 1.0677 
1.0 1.1983 1.2023 1.3431 1.3382 
2.0 1.3648 1.3680 1.5240 1.5184 
3.0 1.4605 1.4645 1.6270 1.6217 
4.0 1.5264 1.5316 1.6967 1.6920 

 
 
Table 2: Numerical values of coefficient of Nusselt 

number with Rd = 0.0, 2.0 and θw =2.1, 
Pr=0.05 and M= 0.5 

 
NuλGrλ-1/4 

Rd = 0.0 Rd = 2.0 
 
 

X DNS SFF DNS SFF 
0.01 0.6181 0.3808 2.7330 1.9425 
0.2 0.1798 0.1772 0.7770 0.8929 
0.5 0.1313 0.1306 0.5782 0.6669 
1.0 0.1164 0.1159 0.5151 0.5730 
2.0 0.0937 0.0924 0.4144 0.4485 
3.0 0.0838 0.0819 0.3661 0.3843 
4.0 0.0773 0.0749 0.3360 0.3459 

 
     Further, we discuss the results in terms of coefficient 
of local skin friction, CfλGrλ-3/4 and coefficient of local 
Nusselt number, NuλGrλ-1/4 for different values of the 
physical parameters, i.e., for magnetic field parameter (or 
Hartmann number), M, thermal radiation parameter (or 
Planck constant), Rd and surface temperature parameter, 
θw against the dimensionless axial distance, X. 
 
4.1 EFFECT OF PHYSICAL PARAMETERS M 
AND θw ON CfλGrλ-3/4 AND NuλGrλ-1/4  

     Firstly, the influence of magnetic field parameter, M = 
0.0, 0.5, 1.0 and 2.0 is illustrated in Fig. 2 for Rd =2.0, θw 
= 2.1 and Pr = 0.05 on coefficient of local skin friction, 
CfλGrλ-3/4, and coefficient of local Nusselt number, 
NuλGrλ-1/4. In can be seen from these figures that both 
coefficients of local skin friction and local Nusselt 
number decreases considerably due to the increase in 
magnetic field parameter which acts as retarding force. 
Intense amount of magnetic field inside the boundary 

layer literally increases the Lorentz force which 
significantly opposes the flow in the reverse direction. 
Thus, coefficients of local skin friction and local Nusselt 
number diminish. In these figures one can see that 
amplitude of the flow pattern increases considerably as 
M is intensified, which is expected since the waves build 
each other due to the constructive interferences. Further, 
in Fig. 2(b) it is observed that the sinusoidal waves decay 
down smoothly as the fluid moves away from the leading 
edge of the plate, which signifies that gradually the 
sinusoidal flow patterns settle down to their asymptotic 
values. 
     The variation of local skin friction coefficient 
CfλGrλ-3/4 and local Nusselt number coefficient NuλGrλ-1/4 
is inspected for θw = 1.1, 2.1 and 3.1 while Rd = 2.0, 
M=0.5 and Pr = 0.05 in Fig. 3. Here, notable 
enhancement is recorded in the coefficient of local skin 
friction and the local Nusselt number coefficients as we 
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Fig 2 (a) Variation of coefficient of local skin friction 

and (b) coefficient of local Nusselt number with X 
for M = 0.0, 0.5, 1.0, 2.0 while Rd = 2.0, θw = 2.1 
and Pr = 0.05 

 
intensify the surface temperature parameter θw Such a 
behavior is possible because increment in surface 
temperature parameter, θw leads to an increase in the 
motion of the fluid particles. This rapid increase in the 
motion of the fluid accelerates the flow rate near the plate. 
Thus, surface temperature parameter is responsible for 
the raise in the temperature of the fluid and ultimately 
wall shear stress and heat transfer rate increases. Further, 
impact of surface temperature parameter tends to 
decrease the momentum boundary layer thickness 
whereas thermal boundary layer thickness increases a 
little.  
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Fig 3. (a) Variation of coefficient of local skin friction 
and (b) coefficient of local Nusselt number with X 
for θw = 1.1, 2.1, 3.1 while Rd = 2.0, M = 0.5 and 
Pr = 0.05. 

 
4.2. EFFECT ON M ON STREAMLINES AND 
ISOTHERMLINES 
     We now focus our attention to observe the effects of 
magnetic field parameter, M on stream lines and isotherm 
lines for the case of liquid metals. 
     The influence of magnetic field on streamlines and 
isotherms with effect of thermal radiation parameter (for 
Rd =2.0) is depicted in Figs. 4 and 5. In these figures 
magnetic field parameter is chosen to be 2.0 and 4.0 
whilst Prandtl number, Pr, is 0.05 and surface 
temperature parameter, θw = 2.1. From the Figs. 4(a) and 
4(b) it is retrieved that ψmax diminishes steadily from 21.3 
to 15.5 for the increasing values of magnetic field 
parameter. Again, this indicates that magnetic field 
opposes the flow, as it is noticed earlier. Basically Figs. 
4-5 are drawn to show how the velocity and temperature 
of the flow becomes stronger because of the response 
gained due to the presence of thermal radiation. For Rd > 
0, fluid energy increases rapidly as the fluid molecules 
are heated up sharply which conclusively give rise to the 
temperature of the fluid in the neighborhood of the 
surface of the plate that leads to increase in the 
temperature gradient. Thus due to the increment of 
energy at the molecular level, the fluid moves more 
frequently and in turn increase the momentum as well as 
thermal boundary layer thicknesses. 
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Fig 4. Streamlines for (a) M = 2.0 (b) M = 4.0 while θw = 

2.1, Rd = 2.0 and Pr = 0.05. 
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Fig 5. Isotherm lines for (a) M = 2.0 (b) M = 4.0 while θw 

= 2.1, Rd = 2.0 and Pr = 0.05. 
 
 
5. CONCLUSIONS 
     In this paper, the interaction of 
magnetohydrodynamic and thermal radiation on the two 
dimensional free convection flow of an electrically 
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conducting and optically dense gray viscous fluid over a 
semi-infinite vertical flat surface has been studied. For 
entire range of locally varying parameter X, the 
governing equations are reduced to parabolic partial 
differential equations using SFF which are then 
integrated numerically by employing the Keller-box 
method. Further, DNS technique is also applied to obtain 
the solution of the boundary layer problem and results 
obtained are compared quantitatively with the former 
method. The numerical values thus obtained in terms of 
local skin friction coefficient CfλGrλ-3/4 and local Nusselt 
number, NuλGrλ-1/4 for various values of the physical 
parameters for low Prandtl number. From the above 
investigation it may conclude that (i) Coefficient of local 
skin friction and coefficient of local Nusselt number 
diminishes owing to the increase in the magnetic field 
parameter M, (iii) increase of surface temperature 
parameter is responsible for the upraise in the 
temperature of the fluid and ultimately it leads to increase 
wall shear stress and heat transfer rate and (iv) it is noted 
that coefficient of local skin friction and coefficient of 
local Nusselt number diminishes due to the retarding 
effects of magnetic field on the fluid flow. 
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